| <iframe src="https://editor.p5js.org/juliuslsk/full/kT2TQ0n9s" width=300 height=650></iframe> | | --------------------------------------------------------------------------------------------- | | | ## Mandelbrot set The set of complex numbers c for which the function $ z_{0} = 0, \qquad z_{n+1} = z_{n}^{2} + c, \quad c \in \mathbb{C}. $ doesn't diverge $ M = \left\{\, c \in \mathbb{C} \;\middle|\; \limsup_{n \to \infty} |z_n| \leq 2 \,\right\}. $ e.g. $ \begin{align} z_{0} &= 0 \\ z_{1} &= z_{0}^{2} + c = 0 + c = c \\ z_{2} &= z_{1}^{2} + c = c^2 + c \\ z_{3} &= z_{2}^{2} + c = (c^2 + c)^2 + c \\ \end{align} $ if $ \begin{align} c &= \underbrace{a}_{實部}+\underbrace{b}_{虛部}i \\ c^2 &= (a+bi)^2 \\ &= \underbrace{(a^2-b^2)}_{實部}+\underbrace{2ab}_{虛部}i \\ c^2+c &= (a+bi)^2 + a+bi \\ &= \underbrace{(a^2-b^2+a)}_{實部} + \underbrace{(2ab+b)}_{虛部}i \end{align} $ ## Julia Set Recall the Mandelbrot Set: $ z_{0} = 0, \qquad z_{n+1} = z_{n}^{2} + c, \quad c \in \mathbb{C}. $ and the C is a fixed complex number e.g.